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Quantum Axiomatics and a Theorem of M. P. Solèr†
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Three of the traditional quantum axioms (orthocomplementation, orthomodularity,
and the covering law) show incompatibilities with two products introduced by
Aerts for the description of joint entities. Inspired by Solèr’s theorem and Holland’s
AUG axiom, we propose a property of ‘plane transitivity,’ which also characterizes
classical Hilbert spaces among infinite-dimensional orthomodular spaces, as a
possible partial substitute for the ‘defective’ axioms.

1. INTRODUCTION

In his axiomatization of standard quantum mechanics Holland (1995)
introduced the Ample Unitary Group Axiom [cf. condition (2) in Proposition
1 of the present paper]. It hints at an evolution axiom, but has the shortcoming
that it is not lattice-theoretic. In particular, it cannot be formulated for property
lattices—complete, atomistic, and orthocomplemented lattices—which play
a central role in the Geneva–Brussels approach to the foundations of physics
(Piron, 1976, 1989, 1990; Aerts, 1982, 1983, 1984; Moore, 1995, 1999).
Inspired by this axiom, we propose a property, called ‘plane transitivity’
(Section 4), which does not have this imperfection. Like the AUG axiom, it
characterizes classical Hilbert spaces among infinite-dimensional orthomodu-
lar spaces and it still seems to demand ‘enough symmetries or evolutions.’

Traditional quantum axiomatics show some shortcomings in the descrip-
tion of compound systems (Aerts, 1982, 1984; Pulmannovà, 1983, 1985). In
particular, orthocomplementation, orthomodularity, and the covering law are
not compatible with two products—‘separated’ and ‘minimal’—introduced
by Aerts (Section 3). Plane transitivity, on the other hand, ‘survives’ these
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two products (Section 4), and is a candidate to help fill the gap left by the
failing axioms.

2. ALTERNATIVES TO SOLÈR’S THEOREM

Consider a complete, atomistic, orthocomplemented, and irreducible
lattice + satisfying the covering law. Suppose, moreover, that its length is
at least 4. Then there exist a division ring K with an involutorial antiautomor-
phism l . l* and a vector space E over K with a Hermitian form ^?, ?&
such that + is orthoisomorphic to the lattice +(E ) of closed (biorthogonal)
subspaces of E. Moreover, + is orthomodular if and only if (E, K, ^?, ?&) is
orthomodular: M 1 M' 5 E for every 0⁄ Þ M , E with M 5 M'' (Maeda
and Maeda, 1970; Piron, 1976; Faure and Frölicher, 1995). Solèr (1995) has
proven the following characterization of classical Hilbert spaces: If E contains
an infinite orthonormal sequence, then K 5 R, C, or H, and (E, K, ^?, ?&) is
the corresponding Hilbert space. Holland (1995) has shown that it is enough
to demand the existence of a nonzero l P K and an infinite orthogonal
sequence (en)n P E such that ^en , en& 5 l for every n. To be precise, either
(E, K, ^?, ?&) or (E, K, 2 ^?, ?&) is then a classical Hilbert space. We shall
not make this precision explicitly in what follows.

In the following proposition, we summarize some alternatives to Solèr’s
result, by means of automorphisms of +(E ).

Proposition 1. Let (E, K, ^?, ?&) be an orthomodular space and let +(E )
be the lattice of its closed subspaces. The following are equivalent:

(1) (E, K, ^?, ?&) is an infinite-dimensional Hilbert space over K 5 R,
C, or H.

(2) E is infinite-dimensional, and given two orthogonal atoms p, q in
+(E ), there is a unitary operator U such that U( p) 5 q.

(3) There exist a, b P +(E ), where b is of dimension at least 2, and
an ortholattice automorphism f of +(E ) such that f (a) # a and f |[0,b] is the
identical map.

(4) E is infinite-dimensional, and given two orthogonal atoms p, q in
+(E ), there exist distinct atoms p1p2 and an ortholattice automorphism f of
+(E ) such that f |[0,p1∨p2] is the identity and f ( p) 5 q.

Condition (2) is Holland’s (1995) Ample Unitary Group axiom and (3)
is due to Mayet (1998). Using the properties listed in Section 2 of Mayet
(1998), one can easily prove that (4) implies (2). We will use (4) to formulate
a lattice-theoretic alternative to the AUG axiom (Section 4).
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3. COMPOUND ENTITIES AND THE AXIOMS

Aerts has introduced two ‘products’ for the description of compound
entities. We shall present them ‘mathematically’ and recall their ‘interaction’
with the axioms of quantum mechanics proposed by Piron (1976). For an
operational justification of these products we refer to Aerts (1982, 1984).

First we recall some notions and results due to Moore (1995). A state
space is a pair (S, '), where S is a set (of states) and ' (orthogonality) is
a symmetric, antireflexive, binary relation which separates the points of S
(if p Þ q, then ∃r such that p ' r and q '⁄ r). For A , S, put A' 5 {q P
S. q ' p ∀p P A}. Then (+S, ,, ') is a property lattice with `{Ar} 5
ù{Ar}, where +S 5 {A , S.A 5 A''}. In particular, (S, +S) is a T1-closure
space: +S { 0⁄ is a family of subsets of S closed under arbitrary intersections,
and {p} P +S, ∀p P S.

Next, consider two entities S1, S2 described by their state spaces (S1,
'1) and (S2, '2). Denote the corresponding property lattices by +1 and +2.
Suppose S1 and S2 are ‘separated.’ Aerts (1982) suggested the separated
product +1 V̀+2 for the description of S1 and S2 taken together. Its state
space is (S1 3 S2, 'V̀), where

( p1, p2) 'V̀ (q1, q2) ⇔ p1 ' q1 or p2 ' q2

+1V̀+2 is then the corresponding property lattice (Piron, 1989). This product
is not ‘compatible’ with orthomodularity and the covering law in the following
sense: If +1V̀+2 satisfies one of these properties, then +1 or +2 is Boolean
(Aerts, 1982).

Aerts (1984) proposed another lattice as the ‘coarsest’ description of a
compound entity containing the two (not necessarily separated) entities S1,
S2. We give a slightly different, but equivalent construction of this minimal
product +1 q +2. Consider the closure spaces (Si , +i). Since Cls1, the
category of T1-closure spaces and continuous maps, is closed under products
(Dikranjan et al., 1988), (S1, +1) and (S2, +2) have a Cls1-product, which
we denote (S1 3 S2, +1 q +2). This notation is for consistency with (Aerts
et al., 1999). Of course, +1 q +2 is a complete atomistic lattice, but the
orthocomplementation is problematic. Indeed, if we define the following—
operationally justified by Aerts (1984)—orthogonality on S1 3 S2: ( p1,
p2) ' (q1, q2) ⇔ p1 ' q1 or p2 ' q2, then +1 q +2 cannot have an
orthocomplementation compatible with ' unless +1 , {0, 1} or +2 , {0,
1}. Moreover, the same is true for the covering law: If +1 q +2 satisfies the
covering law, then +1 or +2 is trivial. For completeness, we mention that
this product is compatible with a suitable form of orthomodularity.

These problems with the traditional axioms in the description of joint
entities have made it desirable to find (nice) properties compatible with the
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separated and minimal products. If we slightly generalize condition (4) of
Proposition 1, we obtain a property which survives both products.

4. PLANE TRANSITIVITY

To encompass both products with the same terminology, we introduce
pseudo property lattices (ppl’s). A lattice (' S, +,) is a ppl if + is a complete
atomistic lattice and ' is an orthogonality on its set of atoms S. Using the
well-known correspondence between atomistic lattices and T1-closure spaces
(Faure, 1994), we have that every ppl has an associated closure space (S,
^+), where

^+ 5 {F , o. p P o, p , ∨F v p P F}

It easily follows that the above construction of the minimal product generalizes
to a minimal product of ppl’s. To be precise, the minimal product of (+1,
S1, ') and (+2, S2, ') is (+1 q +2, S1 3 S2, '), where (S1 3 S2, +1 q
+2) is the Cls1-product of (S1, ^+1) and (S2, ^+2), and the orthogonality is
defined as above.

We call f : + → + a symmetry (of ppl’s) if it is an order-automorphism,
such that ∀p, q P S we have p ' q ⇔ f( p) ' f(q). We remark that for
state spaces, symmetries are nothing other than permutations conserving the
orthogonality in both directions (Piron, 1989). Indeed, if a is such a permuta-
tion of (S, '), then

f : +S → +S: A ° a(A)

is the unique orthoautomorphism of +S such that f{p} 5 a( p) for every p
in S. In particular, f is a symmetry of the ppl (+S, S, ') associated to (S, ').

We call a ppl (+, S, ') plane transitive if for all atoms p, q P S there
exist two distinct atoms p1, p2 and a symmetry f such that f |[0,p1∨p2] is the
identity and f( p) 5 q. Looking at Proposition 1, it is obvious that if + is
the lattice of biorthogonal subspaces of an infinite-dimensional orthomodular
space E, E is a classical Hilbert space iff (with a slight abuse of language)
+ is plane transitive.

Proposition 2. Let (+1, S1, ') and (+2, S2, ') be ppl’s. If both are
plane transitive, then so is their minimal product (+1 q +2, S1 3 S2, ').

Indeed, consider (r1, r2) and (s1, s2) in S1 3 S2. Choose a symmetry f1

and an atom p1 P S1 such that f1(r1) 5 s1 and f1( p1) 5 p1. Next, choose p2

Þ q2 in S2 and a symmetry f2 of (+2, S2, ') such that f2(r2) 5 s2 and
f |[0,p2∨p2] is the identical map. Then f1.Si is a Cls1-automorphism of (Si,
^+i). It follows that (t1, t2) ° ( f1(t1), f2(t2)) is a Cls1-automorphism of (S1 3



Quantum Axiomatics and a Theorem of M. P. Solèr 501

S2, +1 q +2) and hence generates an order-automorphism f1 3 f2 of +1 q
+2. Trivially, f1 3 f2(r1, r2) 5 (s1, s2). Also, f1 3 f2.[0,(p1,p2)∨(p1,q2)] is the
identity. Finally, it is straightforward to verify that f1 3 f2 conserves the
orthogonality on S1 3 S2 in both directions.

Using a similar argument, one easily shows the same holds for the
separated product. Note that a state space (S, ') is called plane transitive if
its associated ppl (+S, S, ') is plane transitive.

Proposition 3. If two state spaces (S1, ') and (S2, ') are plane transitive,
then so is their separated product (S1 3 S2, 'V̀).

5. QUESTIONS

Several questions remain. Plane transitivity does not have the necessary
elegance to be a fundamental axiom: What is the physical significance of
this invariant plane? Another question is: Can the unitary operators of an
orthomodular space be characterized at the lattice level? In other words, can
Holland’s AUG axiom be formulated lattice-theoretically? Perhaps it can be
generalized to the transitivity of the whole group of ortholattice auto-
morphisms and still characterize classical Hilbert spaces among infinite-
dimensional orthomodular spaces. This would be an elegant symmetry (or
evolution) axiom.
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Solèr, M.P. (1995). Characterization of Hilbert spaces by orthomodular spaces, Comm. Algebra

23, 219–243.


